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Since the pioneer work of Anzelius (1) Nusselt (2), Schumann (3), and Hausen (4), a variety of theoretical 
solutions for thermal response of an initially isothermal matrix subject to specific forms of inlet fluid 
temperature disturbances have been formulated. This paper provides a single general solution accommo- 
dating any inlet temperature disturbance, which is suitable for determining the heat transfer performance 
of certain matrix geometries near ambient temperature. 

1 NOMENCLATURE 

Numerical constants 
Numerical constant 
Mean solid temperature excess (0 b - 0i) K 
Non-dimensional ratio B2/Gt 
Biot number = hr/k 
Specific heat J/kgK 

Non-dimensional inlet disturbance 
Mean fluid temperature excess (0g - 01) K 
Non-dimensional ratio G 2/G1 
Heat transfer coefficient, J/m 2 sK 
Numerical constant 
Length of matrix, m 
Mass of matrix, kg 
Mass of gas in matrix, kg 
Mass flow rate of gas, kg/s 
Number of transfer units 
Image of t 
Surface area, m 2 
Time, s 
Time constant of inlet fluid exponential 
disturbance 
Gas velocity defined as (~lL/mg), m/s 
Water equivalent ratio (mb CpL ling Cpg) 
Distance into matrix, m 
z/Ntu 
Delta function 
Temperature, K 
Dummy variable 
Non-dimensional time 
Non-dimensional time constant 
Rotational speed, 1/s 
Non-dimensional rotational speed 

Other symbols are defined where introduced. 
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2 INTRODUCTION 

The regenerator transient test technique may be used to 
determine heat transfer in crushed rock beds, plate-fin 
exchanger cores, tube banks, etc., where a single surface 
heat transfer coefficient is to be determined. 

In its simplest form, the experimental rig used in such 
applications comprises a duct containing the high ther- 
mal capacity test matrix, through which gas is arranged 
to pass at a steady mass flow rate. Fast response pla- 
tinum resistance thermometers, placed immediately 
before and after the test matrix, record timewise varia- 
tion in inlet and outlet temperatures. Upstream of the 
test matrix a fast response electrical resistance heater is 
used to impose a known temperature disturbance on the 
initially isothermal air stream. Heat transfer perfor- 
mance of the test matrix is determined from the change 
in shape of outlet temperature response with respect to 
inlet temperature disturbance, through comparison with 
a mathematical model of the system. 

In precise testing it is essential that experimental con- 
ditions match the mathematical model in use. Different 
matrices may require different mathematical models, 
e.g., a plate-fin exchanger core may require inclusion of 
a term for longitudinal conduction. The theory pre- 
sented below is particularly suitable for testing tube 
banks in crossflow in which the longitudinal conduction 
term is absent (5), (6). 

Physical Assumptions 
(1) Thermal and physical properties of the gas and 

matrix are independent of temperature (implying that 
the temperature change of inlet disturbance is small 
compared with the absolute temperature of the gas). 

(2) Thermal conductivity of the matrix material is 
infinitely large in the direction normal to gas flow, and 
infinitely small in the direction parallel to the flow 
(implying negligible heat loss from test matrix casing, 
that is, testing near ambient temperature conditions, 
with small axial conduction path within the matrix 
itself). 

(3) Thermal capacity of the gas in the matrix/at any 
instant is small compared with the thermal capacity of 
the matrix itself (e.g., implying, air as test fluid, copper 
for test matrix). 

(4) Surface temperatures and bulk temperatures for 
the solid matrix during thermal transients are the same 
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(implying Bi --, O, that is, solid sections thin, and/or with 
high thermal conductivity). 

(5) Test conditions initially isothermal. 
Circumstances may require departure from the above 

conditions, e.g., the requirement to test at much higher 
temperatures may introduce heat loss from the matrix 
surface and therefore transverse temperature gradients 
within the test matrix and gas. In this case the bulk 
temperature within the solid may have to be related to 
surface temperatures and longitudinal diffusion within 
the gas may become significant. Additional terms in the 
equations will then be required. 

For the physical assumptions specified, a variety of 
mathematical attacks on the transient test technique 
have been published for different input disturbances 
(1)-(32). 

It seems useful to bring a number of these together in 
a single general solution capable of accepting the range 
of input disturbances listed in Table 1. The analysis 
given is for initially isothermal conditions in the absence 
of longitudinal conduction. 

Table I 

Input Representative 
disturbance experimental papers Ref. 

Sine wave Bell and Katz 7 
Sine wave Meek 8 
Sine wave Hart and Szomanski 9 
Step Mondt 10 
Step Pucci, Howard, and Piersall 11 
Square wave Close 12 
Exponential Smith and Coombs 5 
Exponential Liang and Yang 13 

3 THEORY 

Coupled Fluid and Solid Equations 
Heat transfer to a gas flowing steadily through a porous 
prism is described by 

Fluid 

~ O g  O O g  _ hS 
t?t + u Ox moCpg 

u ( ¢ _  o.) - -  (o, - og)= Ntu ~, 
(1) 

where u = ML/mg. 

Solid 

00~ _ _ _  

8t 

Introducing 
= Ntu(x/L) 

modification of time z = [ (Ntu /W){(u t -  x)/L}]. Then 
when Bi ~ O, O, ~ Oh, eqs. (1) and (2) become 

Fluid 

8G 
0--~ = (B -- G) (3) 

hS Ntu u 
(0g - 0 , ) =  (0g - 0,) (2) 

mbCpb W L 

non-dimensional scaling of length 
and non-dimensional scaling and 

Solid 

c3B = (G - B) (4) 
0r 

Solution of Basic Equations 
Taking Laplace transforms 

IctGl d(~ 

laBl 
L i N t  = s~  - ~(~, o) 

Term B(¢, 0) is initial temperature distribution in the 
matrix. For isothermal conditions at start of blow 
B(~, 0 )=  0, which keeps the solution simple, see e.g., 
Kohlmayr (14), then 

Fluid 

Solid 

d8  B 8 (5) 
de 

s/~ = (~ - / ~  (6) 

Combining eqs. (5) and (6) to obtain fluid temperatures 

d ~ +  1 1 

which has the solution 

explt 1-s+l 't 
where A is to be determined from boundary conditions. 

At inlet 
4 = 0  

d,(0, s ) =  A = ~(s) 

defined as the Laplace transform of inlet fluid tempera- 
ture disturbance. 

Thus 

G=o( s )  expl(  l s + l  1) 4 

At outlet 
= Ntu 

(7) 

{(1 1)N,., 
G2(Ntu, s ) = ~ ( s ) . e x p  S +  1 i 

Applying inverse Laplace transforms to outlet fluid tem- 
perature response 

i N t u ~ .  I 
G2 = exp ( - N t u ) L - '  exp [ s ~ l - J  g(s)[ 

= e x p ( - N t u )  [ fi(a) + e -~ 
"0 

NtuI , (2xflNtua) l 

= exp ( - N t u ) i j  ° Gx(z - a)f(a) d6 

"" e -"NtuI ' (2x /Ntu~)  I 
+ "o Gl(z - a) x /N tua  da 

= { r } exp ( - N t u )  G,(z) + G,(z - a) R(a) da 
"0 
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where 

R(a) = e -~ . NtuI ' (2x/Ntua)  
x/  N tua 

With non-dimensional inlet disturbances D given in 
Table 2, the general solution for outlet fluid temperature 
response becomes 

. D ( z - a )  R(a) da G # = exp ( -N tu )  D(z) + to 

(8) 
Table 2 

Non-dimensional inlet disturbance, D(z) 

Step 
Exponential 

First 
harmonic 

1 
1 - k exp ( - r / z * )  

a 0 + a I cos t~z + b I sin &z 

A t x = 0  

z / r *  = t / t *  

~T = COt 

When solid temperatures are required, combining eqs. 
(6) and (7) 1:(1 

/~ = ~(s) s ~ i  exp s + 1 

At outlet 

= Ntu 

(9) 

1 ,)Ntu  B2(Ntu, s) = ~(s). ~ exp s + 1 

Applying inverse Laplace transforms to outlet matrix 
temperature response 

B 2 = exp ( -Ntu)L  -1 i 1 [ Ntu i } I s ~  exp ~s + 1! ~(s) 

= exp ( - N t u )  "~ 
"0 

e-Ho(2x/Ntua ) . G,(z - a) da 

G,(z - a) .  P(a).  da = exp ( - N t u )  "~ 
~o 

where 

P(a) = e-Ho(2x/Ntua ) 

With non-dimensional inlet disturbances D given in 
Table 2, the general solution for outlet matrix tempera- 
ture response becomes 

• t 

B • = exp ( - N t u ) ' o  D(z - a) .  P(a).  da (10) 

Temperatures elsewhere in the regenerator may be 
found by inserting other values for ~ in eqs. (8) and (10) 
or by using fictitious values for L. 

For step inlet disturbance it is easily shown that the 
temperature difference (gas-solid) at outlet is 

(G # - B #)step = exp ( -  Ntuz)lo(2x/Ntuz ) 

that the slope of the outlet response at any point is 

dG # 
dr - exp ( - N t u ) .  R(z) 

and that in terms of an independent parameter a, locus 
of maximum slope NtuP(z) = (1 + z)R(z) is given by 

a Io(a) 
z =  1 

2 It(a) 

subject to 2 ~< Ntu < oo with. Ntu = (a2/4z) and 
fl = (z/Ntu). This last relationship was obtained in more 
complicated form by Kohlmayr (14), both expressions 
giving the identical curve shown shaded in Fig. 1. 

Attempt to obtain a similar expression for locus of 
maximum slope for exponential inlet disturbance leads 
to the condition 

"~ a R(a) .  da = o exp ~ . exp (-z/z*)  

Evaluation of this expression was not carried out. In- 
stead the position of maximum slope was determined 
numerically during evaluation of G~xp response curves, 
and the results are plotted in Fig. 1. 

4 RELATIVE ACCURACY OF METHODS OF 
EMPLOYING MATHEMATICAL OUTLET RESPONSE 

CURVES IN EVALUATION OF 
EXPERIMENTAL RESULTS 

The Ntu value corresponding to a given experimental 
outlet response curve is determined through seeking the 
mathematical outlet response prediction which has the 
identical shape. Four techniques of comparison have 
been proposed, namely 

(1) Complete curve matching 
(2) Maximum slope 
(3) Initial rise 
(4) Phase angle and amplitude 

The first three are appropriate to single-blow methods 
of testing. 'Complete curve matching' may be by least 
squares fit or by using a direct optimization simplex 
method (33)-(35) for both step and exponential input 
disturbances. 'Maximum slope' has been used by Locke 
(22) and later by Howard (25) with step inputs for the 
case of varying longitudinal conduction in the matrix. 
For exponential input with zero longitudinal conduc- 
tion, new Ntu versus locus of maximum slope curves are 
presented in Fig. 1. Practicable fast response heaters 
have exponential time constants around r* = 0.2 giving 
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Fig. 1. Locus of maximum slope for experimental input 
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a locus of maximum slope curve close to that for step 
response. By choosing an inlet disturbance time constant 
z* = 2'0 an almost linear relationship between Ntu and 
rmax ~op~ may be obtained, and additionally it becomes 
possible to evaluate experimentally, with some resolu- 
tion, values of Ntu down to about 1. 

Figure 2 illustrates both step and exponential (dimen- 
sionless time constant ~* = 0.2) response curves for zero 
longitudinal conduction calculated using eq. (8). The 
'initial rise' technique proposed by Mondt and Siegla 
(32) makes use of the fact that the intercept of the re- 
sponse to step input at "~ --- 0 has the value exp ( - Ntu) 
from analytical solutions for both zero and infinite (10) 
longitudinal conduction in the matrix, it being post- 
ulated that the same result will hold for intermediate 
values. No heater has been devised which will produce a 
perfect step input (36), and although output response 
curves for step and exponential input (z* = 0"2) are vir- 
tually identical down to Ntu values of around 5 it is clear 
that the 'initial rise' method should be avoided com- 
pletely, the 'maximum slope' method used only with 
knowledge of ~*, and that 'complete curve matching' is 
safest. 

In present computations a top limit of Ntu around 75 
was the maximum attained before machine overflow oc- 
curred within the programme. Curves for values of Ntu 
up to 500 have been obtained for the step test by Furnas 
(23) using graphical methods. 

Figure 3 for first harmonic responses with (a0 = i, 
al = - 1, bl = 0, and & = 1'0) illustrates initial stages of 
steady-cyclic methods of testing, in which values of Ntu 
may be calculated either from measurements of the ratio 
of amplitude of the varying fluid temperature at outlet to 
that at inlet, or alternatively from measurement of the 
phase lag between inlet and outlet fluid temperature var- 
iations. A separate theoretical analysis may be used 
when steady-cyclic conditions have been attained, e.g., 
Bel and Katz (7), Meek (8), and Shearer (31) who con- 
sidered finite radial conductivity within the solid, and 
Stang and Bush (24) who examined the case of longitu- 
dinal conduction within the matrix. 

On precision of the cyclic method Meek (20) observed 
some apparent variation in measured heat transfer 

x, alues against frequency, which he attributed to inaccur- 
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Fig. 3. First harmonic  input a o + al  cos ~oz + b I sin (~z with ao = 1, 
a l =  - 1 ,  b l = 0 , ~ b - - - l ' 0  

acies associated with very small downstream tempera- 
ture amplitudes. Bell and Katz (7) advise 10 heating 
cycles before measurement of amplitude and phase angle 
are taken. For a given Ntu, Stang and Bush (24) showed 
that one frequency exists which will produce best test 
results for a given uncertainty in temperature measure- 
ment, recommending the cyclic method for values of Ntu 
for the difficult range 02 < Ntu < 5.0. However, from 
Fig. 2 there would seem to be less difficulty in resolving 
exponential response curves with complete curve match- 
ing using the single-blow technique. 

Finally, in obtaining theoretical response curves, two 
methods are available to the investigator 

(5) Mathematical derivation of integral expressions 
which are subsequently evaluated numerically 

(6) Direct application of numerical procedure to the 
physical problem 

Kohlmayr (17) advises comparison of results from at 
least two, preferably several, independent curve match- 
ing methods. A general solution for method (5) has 
been presented above, to which comparison techniques 
(l J-(4) may be applied. The direct method (6) favoured 
by Dusinberre (discussion to (37)) has been employed, 
e.g., by Johnson (38), Howard (25), and other workers. 

Additional effects which would complicate the canoni- 
cal solution presented in this paper include 

(1) Longitudinal conduction in the solid (24), (25) 
(2) Axial and longitudinal diffusion in the fluid (18) 
(3) Surface losses from matrix exterior (19), (39) 
(4) Internal heat generation (30), (40), (41) 
(5) Radial conduction in the solid interior (5), (20) 

5 C O N C L U S I O N S  

(1) The 'initial rise' method for determining Ntu is inva- 
lid for any practicable heater. 

(2) The 'maximum slope' method requires accurate 
knowledge of heater exponential response time con- 
stant z*, and should be used with caution when 
determining values of Ntu < 5. 

(3) The 'maximum slope' method may give best resolu- 
tion when z* = 2.0 for values of Ntu down to 1. 

(4) Practical complications exist with the 'periodic' 
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method in that Fourier analysis is required in order 
to extract the first harmonic from input outlet tem- 
perature waves. 

(5) Single-blow testing with 'complete curve matching' 
by computer is recommended. 
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7 APPENDIX 

Inverse Laplace transforms 

I n I ~(t) + e" nlt(2x/nt) 
L -1 exp s~aa  I = x/nt 

1 exp n I eO, lo(2x/nt) L-t { s -a  ~ - a j  = 

may be obtained by series expansion and term by term 
inversion. 
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